soal cerita matematika tentang trigonometri
Matematika
ajhi5
Pertanyaan
soal cerita matematika tentang trigonometri
1 Jawaban
-
1. Jawaban rani2120
1 .A dan B titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat ACB=45˚ ,Jika garis CB =p dan CA=2p√2 , maka panjang terowongan itu adalah…
Jawaban:
Aturan Cosinus
AB²=CB²+CA²-2CA.CB cos C
AB²=p²+(2p√2)²-2(p.2p√2) cos 45˚
AB²=p²+8p²-2(2p²√2)√2/2
AB²=9p²-√2(2p²√2)
AB²=9p²-4p²
AB²=5p²
AB=√5p²
AB=p√5
Maaf Kalo Salah ya....
2. Sebuah kapal berlayar ke arah timur sejauh 30 mil. Kemudian melanjutkan perjalanan dengan arah 30 derajat sejauh 60 mil. Jarak kapal terhadap posisi saat kapal berangkat adalah ..
#Pembahasan:
Bila digambarkan, maka soal diatas menjadi:
<ABC = 30 + 90 = 120
Kita cari panjang AC:
AC^= AB^ + BC^ - 2.AB.
BC. COS 120 (derajat)
= 30^+60^ -2.30.60(-1/2)
= 900 + 3600 + 1800
= 6300
AC = √6300
= 30√7 mil
3. Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B dengan kecepatan 40 km/jam selama 2 jam dengan arah 030°, kemudian melanjutkan perjalanan dari pelabuhan B menuju pelabuhan C dengan kecepatan 60 km/jam selama 2,5 jam dengan arah 150°. Buatlah sketsa perjalanan kapal dan tentukan jarak antara pelabuhan A dan C!
Pembahasan:
Jarak = kecepatan / waktu
Jarak pelabuhan A ke B adalah 40 / 2 = 20 km
Jarak pelabuhan B ke C adalah 60 / 2,5 = 24 km
Perhatikan gambar terlampir.
Besar sudut ABC adalah 30° + 30° = 60°
Gunakan aturan cosinus untuk mencari AC
AC² = AB² + BC² - [2 x AB x BC x cos ∠ABC]
AC² = 20² + 24² - [2 x 20 x 24 x cos 60°]
AC² = 976 - [2 x 20 x 24 x ¹/₂]
AC² = 976 - 480
AC = √ 496
Diperoleh jarak antara pelabuhan A dan C sejauh 4√31 km
4. Abi dengan tinggi 180 cm mengamati puncak gedung dengan sudut elevasi 45°. Kemudian ia berjalan sejauh 12 meter mendekati gedung. Di posisi yang baru, Abi mengamati puncak gedung dengan sudut elevasi 60°. Tentukan tinggi gedung tersebut! (√3 = 1,7)
Pembahasan
Misalkan tinggi gedung = h
Jarak antara gedung dengan posisi Abi mula-mula = 12 + x
Jarak antara gedung dengan posisi Abi yang baru = x
Perhatikan gambar terlampir.
Pada ΔABO, hubungan antara BO dan AO adalah
BO/AO = tan 45°
h / (x + 12) = 1
h = x + 12
Siapkan x = h - 12 .... [Persamaan-1]
Pada ΔBCO, hubungan antara BO dan CO adalah
BO/CO = tan 60°
h / x = √3
h = x√3 .... [Persamaan-2]
Substitusikan Persamaan-1 ke Persamaan-2
h = (h - 12)√3
h = h√3 - 12√3
h√3 - h = 12√3
h(√3 - 1) = 12√3
h = \frac{12 \sqrt{3} }{\sqrt{3}-1 }h=√3−112√3
Rasionalkan
h = \frac{12 \sqrt{3} }{\sqrt{3}-1 } x \frac{\sqrt{3}+1 }{\sqrt{3}+1 }h=√3−112√3x√3+1√3+1
h = \frac{12(3+ \sqrt{3}) }{2}h=212(3+√3)
Diperoleh jarak BO yakni h = 6(3 + √3) meter.
Tinggi gedung = tinggi Abi + BO
Tinggi gedung = 1,8 + 18 + 6√3
Jadi tinggi gedung adalah 19,8 + 6√3 meter
Dituntaskan, tinggi gedung 19,8 + 6(1,7) = 30 meter